Abstract: | The aim of this study was to examine whether extreme endurance stress of trained athletes can influence lipid peroxidation and muscle enzymes. A randomized and placebo-controlled study was carried out on 24 trained long-distance runners who were substituted with α-tocopherol (400 I.U. d-1) and ascorbic acid (200 mg d-1) during 4.5 weeks prior to a marathon race. The serum concentrations of retinol, ascorbic acid, β-carotene, α-tocopherol, malondialdehyde (TBARS) and uric acid as well as gluthation peroxidase (GSH Px) and catalase were measured 4.5 weeks before (A), immediately before (B), immediately after (C) and 24 h after (D) the course. After competition (C) TBARS serum concentrations of the athletes (n= 22) decreased in both groups (P < 0.0001). The ascorbic acid serum concentration increased significantly in the supplemented group from (A) to (B) (P < 0.01), from (B) to (C) (P < 0.001) and in the placebo group a significant increase from (B) to (C) (P < 0.01) was observed. The α-tocopherol serum concentration increased significantly in the supplemented group from (A) to (B) (P < 0.001) and from (B) to (C) (P < 0.05). The enzymes glutathione peroxidase (GSH Px) and catalase measured in erythrocytes as well as the serum selenium levels did not show significant differences at any time. A significant increase of CK concentration was observed from (C) to (D) in the supplemented group (P < 0.01) and in the placebo group (P < 0.001). The increase of CK serum concentration is remarkably lower in the supplemented group compared with the placebo group (P < 0.01). It is concluded that endurance training coupled with antioxidant vitamin supplementation reduces blood CK increase under exercise stress. |