A drug targeting 5-lipoxygenase enhances the activity of a JAK2 inhibitor in CD34+ bone marrow cells from patients with JAK2V617F-positive polycythemia vera in vitro |
| |
Authors: | Yuan Chen Hu Zhao Jing Luo Youping Liao Kui Tan Guoyu Hu |
| |
Affiliation: | Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan 412000, P.R. China |
| |
Abstract: | Janus kinase 2 (JAK2) inhibitors, the first targeted treatments for myeloproliferative neoplasms (MPNs), provide substantial benefits, including a marked reduction in splenomegaly and MPN-associated symptoms. However, these drugs rarely induce molecular remission in patients with MPNs. Zileuton, a 5-lipoxygenase (5-LO) inhibitor, has been demonstrated to selectively deplete hematopoietic stem cells (HSCs) expressing a JAK2 point mutation (JAK2V617F) in mouse models of JAK2V617F-induced polycythemia vera (PV). To determine the potential activity of 5-LO inhibitors in combination with JAK inhibitors against human PV HSCs, the present study first analyzed 5-LO expression in CD34+ bone marrow cells from patients with JAK2V617F-positive PV using western blotting and reverse transcription-quantitative PCR, and then examined the effect of zileuton combined with ruxolitinib on colony formation using a colony formation assay. Furthermore, cell cycle and apoptosis in CD34+ cells from patients with PV and healthy volunteers were determined by flow cytometry. In the present study, 5-LO expression was upregulated in CD34+ cells from patients with PV compared with in CD34+ cells from healthy volunteers. Higher levels of leukotriene B4, a product of the 5-LO signaling pathway, were detected in patients with PV compared with in healthy volunteers. Zileuton treatment suppressed the colony formation of CD34+ cells from patients with PV in a dose-dependent manner. Furthermore, zileuton and ruxolitinib exerted their anticancer effects by suppressing hematopoietic colony formation, inducing apoptosis and arresting the cell cycle of human CD34+ cells from patients with PV. The combination of these two drugs exerted a more beneficial effect than either agent alone. Based on these data, zileuton enhanced the antitumor activity of low-dose ruxolitinib in hematopoietic progenitor cells from patients with PV, providing conceptual validation for further clinical applications of combination treatment with ruxolitinib and zileuton for patients with PV. |
| |
Keywords: | polycythemia vera 5-lipoxygenase ruxolitinib zileuton apoptosis cell cycle |
|
|