首页 | 本学科首页   官方微博 | 高级检索  
检索        


Karyotypic evolution in squamate reptiles: comparative gene mapping revealed highly conserved linkage homology between the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Lacertilia) and the Japanese four-striped rat snake (Elaphe quadrivirgata, Colubridae, Serpentes)
Authors:Kornsorn Srikulnath  Chizuko Nishida  Kazumi Matsubara  Yoshinobu Uno  Amara Thongpan  Saowanee Suputtitada  Somsak Apisitwanich  Yoichi Matsuda
Institution:(1) Department of Genetics, Faculty of Science, Kasetsart University, 50 Paholyothin, Chatuchak, Bangkok, 10900, Thailand;(2) Biosystems Science Course, Graduate School of Life Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo 060-0810, Japan;(3) Department of Biological Sciences, Graduate School of Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo 060-0810, Japan;(4) Present address: Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
Abstract:The butterfly lizard (Leiolepis reevesii rubritaeniata) has the diploid chromosome number of 2n = 36, comprising two distinctive components, macrochromosomes and microchromosomes. To clarify the conserved linkage homology between lizard and snake chromosomes and to delineate the process of karyotypic evolution in Squamata, we constructed a cytogenetic map of L. reevesii rubritaeniata with 54 functional genes and compared it with that of the Japanese four-striped rat snake (E. quadrivirgata, 2n = 36). Six pairs of the lizard macrochromosomes were homologous to eight pairs of the snake macrochromosomes. The lizard chromosomes 1, 2, 4, and 6 corresponded to the snake chromosomes 1, 2, 3, and Z, respectively. LRE3p and LRE3q showed the homology with EQU5 and EQU4, respectively, and LRE5p and LRE5q corresponded to EQU7 and EQU6, respectively. These results suggest that the genetic linkages have been highly conserved between the two species and that their karyotypic difference might be caused by the telomere-to-telomere fusion events followed by inactivation of one of two centromeres on the derived dicentric chromosomes in the lineage of L. reevesii rubritaeniata or the centric fission events of the bi-armed macrochromosomes and subsequent centromere repositioning in the lineage of E. quadrivirgata. The homology with L. reevesii rubritaeniata microchromosomes were also identified in the distal regions of EQU1p and 1q, indicating the occurrence of telomere-to-telomere fusions of microchromosomes to the p and q arms of EQU1.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号