首页 | 本学科首页   官方微博 | 高级检索  
     


Calcium from internal stores triggers GABA release from retinal amacrine cells
Authors:Warrier Ajithkumar  Borges Salvador  Dalcino David  Walters Cameron  Wilson Martin
Affiliation:Section of Neurobiology, Physiology and Behavior, Division of Biological Sciences, University of California, Davis, 95616, USA.
Abstract:The Ca(2+) that promotes transmitter release is generally thought to enter presynaptic terminals through voltage-gated Ca(2+)channels. Using electrophysiology and Ca(2+) imaging, we show that, in amacrine cell dendrites, at least some of the Ca(2+) that triggers transmitter release comes from endoplasmic reticulum Ca(2+) stores. We show that both inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and ryanodine receptors (RyRs) are present in these dendrites and both participate in the elevation of cytoplasmic [Ca(2+)] during the brief depolarization of a dendrite. Only the Ca(2+) released through IP(3)Rs, however, seems to promote the release of transmitter. Antagonists for the IP(3)R reduced transmitter release, whereas RyR blockers had no effect. Application of an agonist for metabotropic glutamate receptor, known to liberate Ca(2+) from internal stores, enhanced both spontaneous and evoked transmitter release.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号