首页 | 本学科首页   官方微博 | 高级检索  
     

基于Teager能量算子(TEO)非线性特征的语音情绪识别
引用本文:高慧,苏广川,陈善广. 基于Teager能量算子(TEO)非线性特征的语音情绪识别[J]. 航天医学与医学工程, 2005, 18(6): 427-431
作者姓名:高慧  苏广川  陈善广
作者单位:1. 航天医学工程研究所,北京,100094;北京理工大学,北京,100081
2. 北京理工大学,北京,100081
3. 航天医学工程研究所,北京,100094
基金项目:中国载人航天工程项目资助.
摘    要:目的 探索识别汉语语音情绪的有效识别特征.方法 采用基于Teager能量算子(TEO)的非线性特征,通过马尔可夫模型法(HMM),从汉语语音中识别平静和生气、欢快、悲伤4种情绪.结果 文本有关时,5个非线性特征:基于频域TEO的Mel倒谱系数(nonlinear frequency domain Mel,NFD_Mel)、基于幅频特性的Mel倒谱参数(amplitude and frequency property Mel,AF_Mel)、基于微分幅频特性的Mel倒谱参数(amplitude and frequency property Mel of differential,DAF_Mel)、基于幅度调制的子带倒谱参数(AM-based SBCC,AM_SBCC)及基于幅频调制的子带倒谱参数(AMFM-based SBCC,AMFM_SBCC)的情绪识别性能全部高于Mel频率倒谱参数(Mel-scaled cepstrum coefficients,MFCC).文本无关时,NFD_Mel、AF_Mel、DAF_Mel的识别率高于MFCC,AM_SBCC、AMFM_SBCC的情绪识别率低于MFCC.结论 结合非线性TEO的识别特征NFD_Mel、AF_Mel、DAF_Mel可有效提高情绪识别性能.

关 键 词:语音 情绪 识别 Teager能量算子
文章编号:1002-0837(2005)06-0427-05
收稿时间:2005-01-23
修稿时间:2005-01-23

Emotion Recognition of Mandarin Speech Using Nonlinear Features Based on Teager Energy Operator(TEO)
GAO Hui,SU Guang-chuan,CHEN Shan-guang. Emotion Recognition of Mandarin Speech Using Nonlinear Features Based on Teager Energy Operator(TEO)[J]. Space Medicine & Medical Engineering, 2005, 18(6): 427-431
Authors:GAO Hui  SU Guang-chuan  CHEN Shan-guang
Affiliation:Institute of Space Medico-Engineering, Beijing 100094,China
Abstract:Objective To study effective features of mandarin speech which represent different emotions in speech. Method Using nonlinear features based on Teager energy operator (TEO) and adopting hidden markov model(HMM) recognizing method , neutral state and 3 emotional status( happiness, anger and sadness) were recognized from the mandarin speech database. Result In comparison with Mel-scaled cepstrum coefficients(MFCC), while text-dependent, improvements of recognition capacity were obtained when using all 5 nonlinear features: nonlinear frequency domain Mel(NFD-Mel),amplitude and frequency property Mel(AF-Mel),amplitude and frequency property Mel of differential(DAF-Mel), AM-based SBCC(AM-SBCC) and AMFM-based SBCC(AMFM-SBCC). While text-independent, the performance of emotion recognition was improved by using NFD-Mel , AF-Mel and DAF-Mel , but deteriorated by using AM-SBCC and AMFM-SBCC. Conclusion The results of recognition demonstrated that the nonlinear features based on TEO, when using NFD-Mel, AF-Mel and DAF-Mel, can increase emotion recognition capacity.
Keywords:speech   emotion   recognition   Teager energy operator
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号