首页 | 本学科首页   官方微博 | 高级检索  
     


ACL transection influences mRNA levels for collagen type I and TNF-alpha in MCL scar.
Authors:Tokifumi Majima  Ian K Y Lo  John A Randle  Linda L Marchuk  Nigel G Shrive  Cyril B Frank  David A Hart
Affiliation:Faculty of Medicine, Department of Microbiology and Infectious Diseases, McCaig Centre for Joint Injury and Arthritis Research, University of Calgary, Alta., Canada.
Abstract:To assess the mRNA expression of extracellular matrix genes which might correlate with or contribute to mechanically weaker medial collateral ligament (MCL) scars in the ACL-deficient rabbit knee joint compared to those in anterior cruciate ligament (ACL) intact knee joints, a bilateral MCL injury was induced in 10 skeletally mature female NZW rabbits. As part of the same surgical procedure, the ACL was transected in one of the knees while the contralateral knee had a sham procedure. The side having the combined MCL and ACL injury was randomly assigned. After six weeks, the rabbits were euthanized. Histological assessments were performed on samples of the MCL scars from each operated knee (n = 3 animals) and mRNA levels for collagen type I, III, V, decorin, biglycan, lumican, fibromodulin, TGF-beta, IL-1, TNF-alpha, MMP-1, MMP-13, and a housekeeping gene (GAPDH) were assessed using semiquantitative RT-PCR on RNA isolated from the MCL scar tissue of the remaining animals (n = 7 animals). Levels of mRNA for each gene were normalized using the corresponding GAPDH value. Results showed that the total RNA yield (per mg wet weight) in the MCL scar of the ACL-deficient knee was significantly greater than that in the MCL scar from the ACL-intact knee. Collagen type I mRNA levels were significantly lower and mRNA levels for TNF-alpha were significantly greater in the scars of ACL-deficient knees compared to scars from ACL-intact joints. There were no significant differences between ACL-deficient and ACL-intact knees with respect to MCL scar mRNA levels for the remaining genes assessed. Histologically, the "flaw" area, which has been shown to correlate with mechanical properties in previous studies, was significantly greater in MCL scars from ACL-deficient knees than in the ACL-intact MCL scars. The mean number of cells/mm2 in MCL scars from ACL-deficient knees was significantly greater than in MCL scars from ACL-intact knees. The present study suggests that MCL scar cell metabolism is differentially influenced by the combined injury environment.
Keywords:Medial collateral ligament scar  Anterior cruciate ligament injury  Gene expression  Matrix molecules  Cytokine
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号