首页 | 本学科首页   官方微博 | 高级检索  
检索        


Design, synthesis, and anti-inflammatory evaluation of a series of novel amino acid-binding 1,5-diarylpyrazole derivatives
Authors:Li Ming-Hui  Yin Lin-Lin  Cai Mao-Jun  Zhang Wei-Yu  Huang Yue  Wang Xin  Zhu Xing-Zu  Shen Jing-Kang
Institution:State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 201203, China.
Abstract:Aim: To design and synthesize a series of novel amino acid-binding 1,5-diarylpyrazole derivatives, which are intended to act as prodrugs with better aqueous solubility than celecoxib, and which will exert potent anti-inflammatory activi-ties after being converted to their parent compounds in vivo. Methods: To introduce an amino acid, celecoxib analogs containing amino or methylamino group were synthesized first through multi-step chemical reactions. All the synthesized compounds were screened in an intact cell-based assay in vitro and in carrageenan-induced mouse paw edema in vivo. Some active compounds were selected for further evaluation in a carrageenan-induced rat paw edema model. The preliminary pharmacokinetics experiments were conducted using high performance liquid chromatography/mass spectrometry (HPLC/MS). Results: Celecoxib, 6 of the 1,5-diarylpyrazole class of celecoxib analogs, and their amino acid derivatives (hydrochloride salts) were synthesized. In vitro screening, the hydrochloride salts showed decreased inhibitory effects on cyclooxygenase (COX)- 1 and COX-2 compared with their parent compounds, but some exhibited potent anti-inflammatory activity in vivo. Compound 4a was selected for further evaluation, and its anti-inflammatory effect was equivalent to that of celecoxib after oral administration in the carrageenan-induced rat paw edema model. At three doses (25 mg/kg, 50 mg/kg, and 100 mg/kg) the percentage inhibition on edema was 20.7%, 52.6%, and 62.6% (for compound 4a) and 27.8%, 38.4%, and 40.1% (for celecoxib), respectively. Preliminary pharmacokinetic evaluations support the hypothesis that compound 4a was actually converted to its parent compound, compound 4. Conclusion: The compound bound with amino acid acts like prodrug, which can exert anti-inflammatory effect similar to celecoxib after being converted to its parent compound. This finding will be of great benefit in carrying out structural modifications of prodrug-like selective COX-2 inhibitors.
Keywords:nonsteroidal anti-inflammatory agents  cyclo oxygenase inhibitors  celecoxib  pyrazole  sulfonamide  prodrugs
本文献已被 维普 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号