首页 | 本学科首页   官方微博 | 高级检索  
检索        


Persistence of PAD and presynaptic inhibition of muscle spindle afferents after peripheral nerve crush
Authors:Enríquez-Denton M  Manjarrez E  Rudomin P
Institution:Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, México DF, Mexico.
Abstract:Two to twelve weeks after crushing a muscle nerve, still before the damaged afferents reinnervate the muscle receptors, conditioning stimulation of group I fibers from flexor muscles depolarizes the damaged afferents M. Enriquez, I. Jimenez, P. Rudomin, Changes in PAD patterns of group I muscle afferents after a peripheral nerve crush. Exp. Brain Res., 107 (1996), 405-420]. It is not known, however, if this primary afferent depolarization (PAD) is indeed related to presynaptic inhibition. We now show in the cat that 2-12 weeks after crushing the medial gastrocnemius nerve (MG), conditioning stimulation of group I fibers from flexors increases the excitability of the intraspinal terminals of both the intact lateral gastrocnemius plus soleus (LGS) and of the previously damaged MG fibers ending in the motor pool, because of PAD. The PAD is associated with the depression of the pre- and postsynaptic components of the extracellular field potentials (EFPs) evoked in the motor pool by stimulation of either the intact LGS or of the previously damaged MG nerves. These observations indicate, in contrast to what has been reported for crushed cutaneous afferents K.W. Horch, J.W. Lisney, Changes in primary afferent depolarization of sensory neurones during peripheral nerve regeneration in the cat, J. Physiol., 313 (1981), 287-299], that shortly after damaging their peripheral axons, the synaptic efficacy of group I spindle afferents remains under central control. Presynaptic inhibitory mechanisms could be utilized to adjust the central actions of muscle afferents not fully recovered from peripheral lesions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号