首页 | 本学科首页   官方微博 | 高级检索  
     


Three-Dimensional Interactive and Stereotactic Human Brain Atlas of White Matter Tracts
Authors:Wieslaw L. Nowinski  Beng Choon Chua  Guo Liang Yang  Guo Yu Qian
Affiliation:(1) Biomedical Imaging Lab, Agency for Science Technology and Research, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
Abstract:We present a human brain atlas of white matter (WM) tracts containing 40 major tracts, which is three-dimensional (3D), segmented, labeled, interactive, stereotactic and correlated to structure and vasculature. We consider: 1) WM accuracy by correlating WM tracts to underlying neuroanatomy and quantifying them; 2) balance between realism and completeness by processing a sequence of track volumes generated for various parameters with the increasing track number to enable a tract “shape convergence”. MPRAGE and DTI in 64 directions of the same subject were acquired on 3 Tesla. The method has three steps: DTI-MPRAGE registration, 3D tract generation from DTI, to WM reconstruction from MPRAGE to parcellation into 17 components. 82 track volumes were generated for a wide spectrum of parameter values: Fractional Anisotropy threshold in [0.0125, 0.55] and trajectory angle lower than 45°,60°,65°,70°,75°,80°,85°,90°. For each tract, a sequence of track volumes was processed to create/edit contours delineating this tract to achieve its shape convergence. The parcellated tracts were grouped into commissures, associations, projections and posterior fossa tracts, and labeled following Terminologia Anatomica. To facilitate that, a dedicated tract editor is developed which processes multiple track volumes, handles tracts in three representations (tracks, contours, envelopes); provides editing/visualization simultaneously on axial, coronal, sagittal planes; enables tract labeling and coloring; and provides numerous tools (track counting, smoothing and length thresholding; representation conversion and saving; structural atlas support). A stereotactic tract atlas along with parcellated WM was developed to explore in real-time any individual tract or their groups along with surrounding neuroanatomy.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号