首页 | 本学科首页   官方微博 | 高级检索  
     

心率变异性信号基于小波变换的分解
引用本文:廖旺才,杨福生,胡广书. 心率变异性信号基于小波变换的分解[J]. 中国医疗器械杂志, 1996, 0(1)
作者姓名:廖旺才  杨福生  胡广书
作者单位:清华大学
摘    要:在对心率变异性(HRV)信号及类似的信号进行分析时往往希望把其中具有分形性质的1/f成份和非1/f成份分解开分别处理。然而,由于1/f成份和非1/f成份在频域上相互重叠,不容易简单地用频域滤波的方法来分解。因此有人根据1/f成份的特点提出了所谓粗粒化谱分析的频域分解方法。由于该方法存在一些缺点,本文根据1/f成份的特点提出了基于小波变换的HRV信号的时域分解算法。对仿真的HRV信号和实际HRV信号的分解的结果证实本文提出的方法优于粗粒化谱分析法。

关 键 词:心率变异性,粗粒化谱分析,小波变换

The decomposition of heart rate variability signal based on wavelet transform
Liao Wangcai,Yang Fusheng,Hu Guangshu. The decomposition of heart rate variability signal based on wavelet transform[J]. Chinese journal of medical instrumentation, 1996, 0(1)
Authors:Liao Wangcai  Yang Fusheng  Hu Guangshu
Affiliation:Qinghua University
Abstract:It is often desirable to decompose HRV signals into 1/f component and non-1/f component in the analysis of them,because the former is fractal in nature.Since the1/f component and non-1/fcomponent are overlapped in frequency domain,it is difficult to decompose it simply by frequency domain filtering.Yamamoto presented a frequency domain decomposition method called Coarse Graining Spectral Analysis(CGSA).A time domain decomposition method based on Wavelet Transform is presented in this paper which is superior to CGSA.The result of the decomposition of a simulated HRV signal and a real HRV signal confirms our conclusion.
Keywords:Heart rate variability  Coarse Graining spectral analysis  Wavelet transfom  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号