首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effects of calcium on the discharge pattern of primary and secondary endings of isolated cat muscle spindles recorded under a ramp-and-hold stretch
Authors:Fischer M  Schafer S S
Institution:Department of Neurophysiology (Unit 4230), Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
Abstract:The impulse activity of muscle spindles isolated from the cat tenuissimus muscle was investigated under varying concentrations of external calcium (Ca(2+)). The outer capsule of the muscle spindle represents an effective diffusion barrier for Ca(2+) ions since activity changes were strong and rapid only if the capsule was partly removed from the sensory region of the receptor. The impulse activity of both primary and secondary muscle spindle endings was lowered by an increase in the external Ca(2+) concentration from 1.8 mM (normal Ringer's solution) to 2.7 mM and raised by a decrease in the Ca(2+) concentration from 1.8 to 0.9 mM. Primary endings were generally more strongly affected than secondary endings. With primary endings the firing rate changed by 23-52% when the external Ca(2+) concentration was altered by 0.9 mM. With secondary endings the discharge frequency changed by 15-24%. The afferent discharge patterns were obtained under repetitive ramp-and-hold stretches and were analyzed with regard to influences of external Ca(2+) ions on the static and dynamic components of the endings' responses. The stretch sensitivity and the adaptive response of both types of ending increased in the low Ca(2+) solution and decreased in the high Ca(2+) solution, but a specific effect on a single component of the responses to stretch was not observed. These findings indicate an overall change in excitability when the external Ca(2+) concentration was varied. The mechanical properties of the receptor were probably not affected since changes in the Ca(2+) concentration did not elicit a contraction or relaxation of the intrafusal muscle fibers. On the one hand, the observed effects can be explained according to the surface potential theory by an indirect influence of extracellular Ca(2+) ions on ion channels of the sensory nerve terminals, with Ca(2+) ions binding to negative charged sites at the endings' outer membrane. On the other hand, the results are consistent with the supposition that Ca(2+) ions act directly on ion channels of the sensory membrane of muscle spindle endings.
Keywords:Isolated muscle spindle  Impulse activity  External calcium concentration  Ramp-and-hold stretch  Stretch sensitivity  Adaptation
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号