首页 | 本学科首页   官方微博 | 高级检索  
     

基于ABC-SVM的运动想象脑电信号模式分类
引用本文:马玉良,刘卫星,张淞杰,王振杰,张启忠. 基于ABC-SVM的运动想象脑电信号模式分类[J]. 中国医学物理学杂志, 2018, 0(9): 1056-1062. DOI: 10.3969/j.issn.1005-202X.2018.09.012
作者姓名:马玉良  刘卫星  张淞杰  王振杰  张启忠
作者单位:杭州电子科技大学智能控制与机器人研究所,浙江杭州310018
摘    要:为了提高运动想象脑电信号分类的准确率,针对传统支持向量机(SVM)分类方法在脑电信号处理中存在寻优繁琐、工作量大和分类正确率低等问题,本研究提出一种基于人工蜂群(ABC)算法优化SVM的分类识别方法。首先利用正则化共空间模式对脑电信号进行特征提取,然后利用ABC算法优化SVM的惩罚因子和核参数,最后利用提取的右手和右脚两类脑电信号样本特征对优化后的SVM进行训练和分类测试。实验结果表明ABC-SVM分类器提高了脑电信号分类的准确率,比传统的SVM分类器准确率高出2.5%,证明该算法的可行性和较高准确性。

关 键 词:脑电信号  人工蜂群算法  支持向量机  正则化共空间模式  模式分类

Pattern classification of motor imagery EEG signals based on ABC-SVM algorithm
MAYuliang,LIUWeixing,ZHANG Songjie,WANG Zhenjie,ZHANG Qizhong. Pattern classification of motor imagery EEG signals based on ABC-SVM algorithm[J]. Chinese Journal of Medical Physics, 2018, 0(9): 1056-1062. DOI: 10.3969/j.issn.1005-202X.2018.09.012
Authors:MAYuliang  LIUWeixing  ZHANG Songjie  WANG Zhenjie  ZHANG Qizhong
Affiliation:Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract:Due to the problems of traditional support vector machine (SVM) classification method in electroencephalogram (EEG)signal processing, such as high complexity of searching the optimal parameters, heavy workload and low classification accuracy,a new SVMclassification method based on artificial bee colony (ABC) algorithm is proposed in this study to improve the accuracyof motor imagery EEG recognition. Firstly, the regularization common spatial pattern is used for EEG feature extraction. Thenpenalty factor and kernel function of SVM are optimized by ABC algorithm. Finally, the optimized SVM classifiers is trainedand tested by two kinds of EEG data of right foot and right hand movements. The final results show that the accuracy of ABCSVMclassifier for EEG classification is averagely 2.5% higher than that of non-parameter-optimized SVM classifier, whichproved that the proposed algorithm is feasibility and achieves a high accuracy in motor imagery EEG recognition.
Keywords:electroencephalogram signal  artificial bee colony algorithm  support vector machine  regularization common spatialpattern  pattern classification
本文献已被 CNKI 等数据库收录!
点击此处可从《中国医学物理学杂志》浏览原始摘要信息
点击此处可从《中国医学物理学杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号