首页 | 本学科首页   官方微博 | 高级检索  
     


Lipopolysaccharide attenuates phrenic long-term facilitation following acute intermittent hypoxia
Authors:Vinit Stéphane  Windelborn James A  Mitchell Gordon S
Affiliation:a Department of Comparative Biosciences, University of Wisconsin, Madison, 2015 Linden Dr, Madison, WI 53706-1102, USA
Abstract:Lipopolysaccharide (LPS) induces inflammatory responses, including microglial activation in the central nervous system. Since LPS impairs certain forms of hippocampal and spinal neuroplasticity, we hypothesized that LPS would impair phrenic long-term facilitation (pLTF) following acute intermittent hypoxia (AIH) in outbred Sprague-Dawley (SD) and inbred Lewis (L) rats. Approximately 3h following a single LPS injection (i.p.), the phrenic response during hypoxic episodes is reduced in both rat strains versus vehicle treated, control rats (SD: 84 ± 7% vs. 128 ± 14% baseline for control, p < 0.05; L: 62 ± 10% vs. 90 ± 9% baseline for control, p < 0.05). At 60 min post-AIH, pLTF is also diminished by LPS in both strains: (SD: 22 ± 5% vs. 73.5 ± 14% baseline for control, p < 0.05; L: 18 ± 15% vs. 56 ± 8% baseline for control, p < 0.05). LPS alone does not affect phrenic burst frequency in either rat strain, suggesting that acute LPS injection has minimal effect on brainstem respiratory rhythm generation. Thus, systemic LPS injections and (presumptive) inflammation impair pLTF, a form of spinal neuroplasticity in respiratory motor control. These results suggest that ongoing infection or inflammation must be carefully considered in studies of respiratory plasticity, or during attempts to harness spinal plasticity as a therapeutic tool in the treatment of respiratory insufficiency, such as spinal cord injury.
Keywords:Respiratory plasticity   Lipopolysaccharide   Intermittent hypoxia   Phrenic long term facilitation   Inflammation
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号