G protein-coupled receptor kinase-5 regulates thrombin-activated signaling in endothelial cells |
| |
Authors: | Tiruppathi C Yan W Sandoval R Naqvi T Pronin A N Benovic J L Malik A B |
| |
Affiliation: | Department of Pharmacology, College of Medicine, University of Illinois, Chicago, IL 60612, USA. tiruc@uic.edu |
| |
Abstract: | We studied the function of G protein-coupled receptor kinases (GRKs) in the regulation of thrombin-activated signaling in endothelial cells. GRK2, GRK5, and GRK6 isoforms were expressed predominantly in endothelial cells. The function of these isoforms was studied by expressing wild-type and dominant negative (dn) mutants in endothelial cells. We determined the responses to thrombin, which activates intracellular signaling in endothelial cells by cleaving the NH(2) terminus of the G protein-coupled proteinase-activated receptor-1 (PAR-1). We measured changes in phosphoinositide hydrolysis and intracellular Ca(2+) concentration ([Ca(2+)](i)) in response to thrombin as well as the state of endothelial activation. In the latter studies, the transendothelial monolayer electrical resistance, a measure of the loss of endothelial barrier function, was measured in real time. Of the three isoforms, GRK5 overexpression was selective in markedly reducing the thrombin-activated phosphoinositide hydrolysis and increased [Ca(2+)](i). GRK5 overexpression also inhibited the thrombin-induced decrease in endothelial monolayer resistance by 75%. These effects of GRK5 overexpression occurred in association with the specific increase in the thrombin-induced phosphorylation of PAR-1. In contrast to the effects of GRK5 overexpression, the expression of the dn-GRK5 mutant produced a long-lived increase in [Ca(2+)](i) in response to thrombin, whereas dn-GRK2 had no effect. These results indicate the crucial role of the GRK5 isoform in the mechanism of thrombin-induced desensitization of PAR-1 in endothelial cells. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|