Age-related biological characterization of mesenchymal progenitor cells in human articular cartilage |
| |
Authors: | Chang Hong-Xing Yang Liu Li Zhong Chen Guangxing Dai Gang |
| |
Affiliation: | Department of Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China. |
| |
Abstract: | Adult articular cartilage has a low regeneration capacity due to lack of viable progenitor cells caused by limited blood supply to cartilage. However, recent studies have demonstrated the existence of chondroprogenitor cells in articular cartilage. A critical question is whether these mesenchymal progenitor cells are functionally viable for tissue renewal and cartilage repair to postpone cartilage degeneration. This study was designed to compare the number and function of mesenchymal progenitor cells in articular cartilage collected from human fetuses, healthy adults (aged 28-45 years), and elderly adults (aged 60-75 years) and cultured in vitro. We detected multipotent mesenchymal progenitor cells, defined as CD105+/CD166+ cells, in human articular cartilage of all ages. However, mesenchymal progenitor cells accounted for 94.69%±2.31%, 4.85%±2.62%, and 6.33%±3.05% of cells in articular cartilage obtained from fetuses, adults, and elderly patients, respectively (P<.001). Furthermore, fetal mesenchymal progenitor cells had the highest rates of proliferation measured by cell doubling times and chondrogenic differentiation as compared to those from adult and elderly patients. In contrast, alkaline phosphatase levels, which are indicative of osteogenic differentiation, did not show significant reduction with aging. However, spontaneous osteogenic differentiation was detected only in mesenchymal progenitor cells from elderly patients (with lower Markin scales). The lower chondrogenic and spontaneous osteogenic differentiation of mesenchymal progenitor cells derived from elderly patients may be associated with the development of primary osteoarthritis. These results suggest that measuring cartilage mesenchymal progenitor cells may not only identify underlying mechanisms but also offer new diagnostic and therapeutic potential for patients with osteoarthritis. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|