首页 | 本学科首页   官方微博 | 高级检索  
     


Skeletal muscle phosphagen and lactate concentrations in ischaemic dynamic exercise
Authors:T. Ingemann-Hansen  J. HalkjÆr-Kristensen  O. Halskov
Affiliation:(1) Laboratory for Clinical Physiology of Exercise, Department of Physical Medicine and Rehabilitation, Rigshospitalet 2001, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
Abstract:Summary Five young males performed dynamic, submaximal contractions to exhaustion with the quadriceps muscle under arterial occlusion. The work load was 14.7 Watt (W). After 10 min rest with intact arterial circulation, the subjects commenced another bout to exhaustion; this process was repeated until a total of 10–16 bouts had been performed. Muscle biopsies were obtained immediately after the second, fifth, eighth, and last bout as well as 30 min after the last bout. The concentrations of adenosine triphosphate (ATP), creatine phosphate (CP), lactate, and glycogen were measured in each sample and some material underwent histochemical analysis. Muscle lactate was highest following the second work bout [22.9 mmol/kg wet weight (ww)] and gradually declined to 7.0 mmol/kg ww by the end of the last bout. CP level was low in all postexercise samples with the exception of a remarkably high CP (11.7 mmol/kg ww) after the last bout. Glycogen utilization tended to parallel muscle lactate levels, the rate of depletion being most rapid initially. Histochemical staining for glycogen depletion revealed that both type I and II fibres were low in glycogen, although type I was depleted most uniformly. In the first work bouts the high lactate and low CP levels in the total muscle could be responsible for the fatigue; none of these factors seem adequate to explain the development of the fatigue experienced in the later work bouts. It is concluded that muscle fatigue in this type of exercise is not related to substrate depletion or accumulation of metabolites, further that the fibre recruitment pattern is determined by the type and relative severity of performed work rather than local metabolic factors.Supported by grants from the Danish National Association Against Rheumatic Diseases and the Danish Council for Sports Research
Keywords:Glycogen  Muscle fibre types  Muscular fatigue
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号