首页 | 本学科首页   官方微博 | 高级检索  
检索        


Comparison of the activity of 2'-deoxycoformycin and erythro-9-(2-hydroxy-3-nonyl)adenine in vivo.
Authors:W Plunkett  L Alexander  S Chubb  T L Loo
Institution:Department of Developmental Therapeutics, The University of Texas System Cancer Center, M. D. Anderson Hospital and Tumor Institute, Houston, TX, USA 77
Abstract:The inhibition of P388 cell deamination of arabinosyladenine (ara-A) in vivo by the adenosine deaminase inhibitors 2′-deoxycoformycin (dCF) and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and their subsequent effects on ara-A metabolism were determined and compared. A single i.p. injection of EHNA (3 mg/kg, 10.9 μmoles/kg) initially inhibited ara-A deamination in vivo by 96 per cent with recovery to 50 per cent of control values within 30 min. In comparison, dCF (0.2 mg/kg, 0.75 μmole/kg) inhibition of ara-A deamination was initially low (4 per cent), but maximized (96 per cent) after 15 min. This inhibition was sustained for 2 hr and did not recover to 50 per cent of control values until after 10 hr. Injected alone, the T12 of ara-A in the peritoneal ascitic fluid was less than 1 min, but was increased to 7 min when injected with EHNA and to 12 min when injected 15 min after dCF. The rate of efflux of ara-A and its metabolites from the peritoneal cavity (Tcase12 = 15?18 min) was not affected significantly by either deaminase inhibitor. Cellulat ara-ATP concentrations were elevated and the extent and duration of inhibition of DNA synthetic capacity were increased identically in cells of mice treated with ara-A and either deaminase inhibitor as compared with those treated with ara-A alone. Sustained deaminase inhibition after intraperitoneal concentrations of ara-A had been diminished by otherwise normal disposition did not augment the biochemically demonstrable activity of ara-A. Therefore, it appears that maintenance of the initial high concentrations of ara-A is the primary function of a deaminase inhibitor in increasing the therapeutic efficacy of this analog.
Keywords:EHNA  erythro-9-(2-hydroxy-3-nonyl)-adenine  cordycepin  3′-deoxyadenosine  DSC  DNA synthetic capacity  PCA  perchloric acid
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号