首页 | 本学科首页   官方微博 | 高级检索  
     


Activation of JNK and xanthine oxidase by TNF-alpha impairs nitric oxide-mediated dilation of coronary arterioles
Authors:Zhang Cuihua  Hein Travis W  Wang Wei  Ren Yi  Shipley Robert D  Kuo Lih
Affiliation:Department of Medical Physiology, Cardiovascular Research Institute, College of Medicine, The Texas A&M University System Health Science Center, 702 Southwest H.K. Dodgen Loop, Temple, TX 76504, USA.
Abstract:Elevated levels of tumor necrosis factor-alpha (TNF), a proinflammatory cytokine, are associated with coronary artery disease. However, it is unclear whether vasodilator function of coronary resistance arterioles is susceptible to TNF. Herein, we examined whether TNF can affect endothelium-dependent nitric oxide (NO)-mediated dilation of coronary arterioles to adenosine and whether inflammatory signaling pathways such as mitogen-activated protein kinases, ceramide sphingolipids, and oxidative stress are involved in the TNF-mediated effect. To eliminate confounding influences associated with in vivo preparations, coronary arterioles from porcine heart were isolated and pressurized without flow for in vitro study. Intraluminal treatment with TNF (1 ng/ml, 90 min) significantly attenuated the NO release and vasodilation to adenosine. This inhibitory effect was not observed in denuded vessels or in the presence of NO synthase inhibitor l-NMMA. Histochemical data showed that superoxide production and JNK phosphorylation in arteriolar endothelial cells was enhanced by TNF. Administration of superoxide scavenger or inhibitors of ceramide-activated protein kinase (dimethylaminopurine), JNK (SP600125 and dicumarol), and xanthine oxidase (allopurinol) reduced superoxide production as well as restored NO release and vasodilation to adenosine. Conversely, the effects of TNF were insensitive to inhibitors of p38 (SB203580), ERK (PD98059), NAD(P)H oxidase (apocynin), or mitochondrial respiratory chain (rotenone). These data indicate that TNF inhibits endothelium-dependent NO-mediated dilation of coronary arterioles by ceramide-induced activation of JNK and subsequent production of superoxide via xanthine oxidase. Because myocardial ischemia augments adenosine production and elevates TNF level, inhibiting adenosine-stimulated endothelial release of NO by TNF could contribute to inadequate regulation of coronary blood flow during the development of ischemic heart disease.
Keywords:Tumor necrosis factor   c-Jun N-terminal kinase   Nitric oxide
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号