首页 | 本学科首页   官方微博 | 高级检索  
     


Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure
Authors:Charles E. Riva  Mark Hero  Patrick Titze  Beno Petrig
Affiliation:(1) Institut de Recherche en Ophthalmologie, Av. Grand-Champsec 64, Case Postale 4168, CH-1950 Sion, Switzerland
Abstract:bull Background: Studies in animals have demonstrated that optic nerve head (ONH) blood flow (Fonh) is autoregulated, but there is a lack of evidence for such a process in humans. Therefore, we investigated the relationship between Fonh and mean ocular perfusion pressure (PPm) in normal volunteers when PPm is decreased through elevation of the intraocular pressure (IOP). bull Methods: Laser Doppler flowmetry (LDF) was used to measure relative mean velocity (Velohn), volume (Volonh) and Fonh of blood at sites of the ONH away from visible vessels, while PPm was decreased in two ways: (1) rapidly, by IOP increments of 15 s duration, and (2) slowly, by IOP increments of 2 min duration, both by scleral suction cup in one eye of each of nine subjects. bull Results: A rapid and large decrease of PPm of more than 100% induced a decrease of more than 80% in Fonh. With the slower decrease in PPm Fonh remained constant down to a PPm of sime22 mm Hg (IOP=40 mm Hg) and then decreased, predominatly due to a decrease in Velohn. Immediately after removal of the suction cup, Fonh increased transiently by 44% above baseline. bull Conclusions: This study demonstrates efficient blood flow autoregulation in the OHN, which is probably brought about by an increase in vascular capacitance. The magnitude of the reactive hyperaemia agrees with the compensatory decrease in ONH vascular resistance during IOP elevation. The time scale of the autoregulatory process and the dependence of the hyperaemia upon duration of IOP elevation suggest a metabolic mechanism of autoregulation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号