首页 | 本学科首页   官方微博 | 高级检索  
     


Use of genetically engineered transgenic mice to investigate the role of galanin in the peripheral nervous system after injury
Authors:Holmes F E  Mahoney S-A  Wynick D
Affiliation:LINE, DHB, University of Bristol, Whitson Street, Bristol BS1 3NY, UK.
Abstract:The neuropeptide galanin is present at high levels within the dorsal root ganglia (DRG) and spinal cord during development and after peripheral nerve damage in the adult. This pattern of expression suggests that it may play a role in the adaptive response of the peripheral nervous system (PNS) to injury. Several experimental paradigms have demonstrated that galanin modulates pain transmission, particularly after nerve injury. In our laboratory we have used a transgenic approach to further elucidate the functions of galanin within the somatosensory system. We have generated mice which over-express galanin (either inducibly after nerve injury, or constitutively), and knock-out (KO) mice, in which galanin is absent in all cells, throughout development and in the adult. Analysis of the nociceptive behaviour of the galanin over-expressing animals, before and after nerve injury, supports the view that galanin is an inhibitory neuromodulator of spinal cord transmission. In apparent contradiction to these findings, galanin KO animals fail to develop allodynia and hyperalgesia after nerve injury. However, further studies have shown that galanin is critical for the developmental survival of a subset of small diameter, unmyelinated sensory neurons that are likely to be nociceptors. This finding may well explain the lack of neuropathic pain-like behaviour after injury in the KO animals. Furthermore, the developmental survival role played by galanin is recapitulated in the adult where the peptide is required for optimal neuronal regeneration after injury, and in the hippocampus where it plays a neuroprotective role after excitotoxic injury.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号