首页 | 本学科首页   官方微博 | 高级检索  
检索        


Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease)
Authors:Koike Masato  Shibata Masahiro  Waguri Satoshi  Yoshimura Kentaro  Tanida Isei  Kominami Eiki  Gotow Takahiro  Peters Christoph  von Figura Kurt  Mizushima Noboru  Saftig Paul  Uchiyama Yasuo
Institution:Department of Cell Biology and Neurosciences, Osaka University Graduate School of Medicine, Suita, Japan.
Abstract:In cathepsin D-deficient (CD-/-) and cathepsins B and L double-deficient (CB-/-CL-/-) mice, abnormal vacuolar structures accumulate in neurons of the brains. Many of these structures resemble autophagosomes in which part of the cytoplasm is retained but their precise nature and biogenesis remain unknown. We show here how autophagy contributes to the accumulation of these vacuolar structures in neurons deficient in cathepsin D or both cathepsins B and L by demonstrating an increased conversion of the molecular form of MAP1-LC3 for autophagosome formation from the cytosolic form (LC3-I) to the membrane-bound form (LC3-II). In both CD-/- and CB-/-CL-/- mouse brains, the membrane-bound LC3-II form predominated whereas MAP1-LC3 signals accumulated in granular structures located in neuronal perikarya and axons of these mutant brains and were localized to the membranes of autophagosomes, evidenced by immunofluorescence microscopy and freeze-fracture-replica immunoelectron microscopy. Moreover, as in CD-/- neurons, autofluorescence and subunit c of mitochondrial ATP synthase accumulated in CB-/-CL-/- neurons. This suggests that not only CD-/- but also CB-/-CL-/- mice could be useful animal models for neuronal ceroid-lipofuscinosis/Batten disease. These data strongly argue for a major involvement of autophagy in the pathogenesis of Batten disease/lysosomal storage disorders.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号