Progesterone stimulates mammary gland ductal morphogenesis by synergizing with and enhancing insulin-like growth factor-I action |
| |
Authors: | Ruan Weifeng Monaco Marie E Kleinberg David L |
| |
Affiliation: | Neuroendocrine Unit, Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA. |
| |
Abstract: | Progestins have been implicated in breast cancer development, yet a role for progesterone (Pg) in ductal morphogenesis (DM) has not been established. To determine whether Pg could cause DM, we compared relative effects of Pg, estradiol (E2) and IGF-I on anatomical and molecular biological parameters of IGF-I-related DM in oophorectomized female IGF-I(-/-) mice. Pg had little independent effect on mammary development, but together with IGF-I, in the absence of E2, Pg stimulated an extensive network of branching ducts, occupying 92% of the gland vs. 28.3% with IGF-I alone, resembling pubertal development (P < 0.002). Its major effect was on enhancing duct length and branching (P < 0.002). Additionally, Pg enhanced phosphorylation of IRS-1, increased cell division, and increased the antiapoptotic effect of IGF-I. Pg action was inhibited by RU486 (P < 0.01). E2 also stimulated DM by enhancing IGF-I action but had a greater effect on terminal end bud formation and side branching (P < 0.002). In contrast to previous findings, long-term exposure to E2 alone, without IGF-I, caused formation of ducts and side branches, a novel finding. Both IGF-I and E2 were found necessary for Pg-induced alveolar development. In conclusion, Pg, through Pg receptor can enhance IGF-I action in DM, and E2 acts through a similar mechanism; E2 alone caused formation of ducts and side branches; there were differences in the actions of Pg and E2, the former largely affecting duct formation and extension, and the latter side branching; and both IGF-I and E2 were necessary for Pg to form mature alveoli. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|