首页 | 本学科首页   官方微博 | 高级检索  
检索        


Melatonin attenuates D‐galactose‐induced memory impairment,neuroinflammation and neurodegeneration via RAGE/NF‐KB/JNK signaling pathway in aging mouse model
Authors:Tahir Ali  Haroon Badshah  Tae Hyun Kim  Myeong Ok Kim
Institution:Department of Biology and Applied Life Science (BK 21), College of Natural Sciences (RINS), Gyeongsang National University, Jinju, Korea
Abstract:Melatonin acts as a pleiotropic agent in various age‐related neurodegenerative diseases. In this study, we examined the underlying neuroprotective mechanism of melatonin against D‐galactose‐induced memory and synaptic dysfunction, elevated reactive oxygen species (ROS), neuroinflammation and neurodegeneration. D‐galactose was administered (100 mg/kg intraperitoneally (i.p.)) for 60 days. After 30 days of D‐galactose administration, vehicle (same volume) or melatonin (10 mg/kg, i.p.) was administered for 30 days. Our behavioral (Morris water maze and Y‐maze test) results revealed that chronic melatonin treatment alleviated D‐galactose‐induced memory impairment. Additionally, melatonin treatment reversed D‐galactose‐induced synaptic disorder via increasing the level of memory‐related pre‐and postsynaptic protein markers. We also determined that melatonin enhances memory function in the D‐galactose‐treated mice possibly via reduction of elevated ROS and receptor for advanced glycation end products (RAGE). Furthermore, Western blot and morphological results showed that melatonin treatment significantly reduced D‐galactose‐induced neuroinflammation through inhibition of microgliosis (Iba‐1) and astrocytosis (GFAP), and downregulating other inflammatory mediators such as p‐IKKβ, p‐NF‐KB65, COX2, NOS2, IL‐1β, and TNFα. Moreover, melatonin lowered the oxidative stress kinase p‐JNK which suppressed various apoptotic markers, that is, cytochrome C, caspase‐9, caspase‐3 and PARP‐1, and prevent neurodegeneration. Hence, melatonin attenuated the D‐galactose‐induced memory impairment, neuroinflammation and neurodegeneration possibly through RAGE/NF‐KB/JNK pathway. Taken together, our data suggest that melatonin could be a promising, safe and endogenous compatible antioxidant candidate for age‐related neurodegenerative diseases such as Alzheimer's disease (AD).
Keywords:D‐galactose  melatonin  memory impairment  neurodegeneration  neuroinflammation  reactive oxygen species
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号