首页 | 本学科首页   官方微博 | 高级检索  
检索        


Melatonin promotes hepatic differentiation of human dental pulp stem cells: clinical implications for the prevention of liver fibrosis
Authors:Seong‐Suk Jue  So‐Youn Lee  Eun‐Cheol Kim
Institution:1. Department of Oral Anatomy, School of Dentistry, Kyung Hee University, Seoul, Korea;2. Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth & Periodontal Regeneration (MRC), Kyung Hee University, Seoul, Korea
Abstract:Melatonin's effect on hepatic differentiation of stem cells remains unclear. The aim of this study was to investigate the action of melatonin on hepatic differentiation as well as its related signaling pathways of human dental pulp stem cells (hDPSCs) and to examine the therapeutic effects of a combination of melatonin and hDPSC transplantation on carbon tetrachloride (CCl4)‐induced liver fibrosis in mice. In vitro hepatic differentiation was assessed by periodic acid‐Schiff (PAS) staining and mRNA expression for hepatocyte markers. Liver fibrosis model was established by injecting 0.5 mL/kg CCl4 followed by treatment with melatonin (5 mg/kg, twice a week) and hDPSCs. In vivo therapeutic effects were evaluated by histopathology and by means of liver function tests including measurement of alanine transaminase (ALT), aspartate transaminase (AST), and ammonia levels. Melatonin promoted hepatic differentiation based on mRNA expression of differentiation markers and PAS‐stained glycogen‐laden cells. In addition, melatonin increased bone morphogenic protein (BMP)‐2 expression and Smad1/5/8 phosphorylation, which was blocked by the BMP antagonist noggin. Furthermore, melatonin activated p38, extracellular signal‐regulated kinase (ERK), and nuclear factor‐κB (NF‐κB) in hDPSCs. Melatonin‐induced hepatic differentiation was attenuated by inhibitors of BMP, p38, ERK, and NF‐κB. Compared to treatment of CCl4‐injured mice with either melatonin or hDPSC transplantation alone, the combination of melatonin and hDPSC significantly suppressed liver fibrosis and restored ALT, AST, and ammonia levels. For the first time, this study demonstrates that melatonin promotes hepatic differentiation of hDPSCs by modulating the BMP, p38, ERK, and NF‐κB pathway. Combined treatment of grafted hDPSCs and melatonin could be a viable approach for the treatment of liver cirrhosis.
Keywords:cell therapy  hepatic differentiation  human dental pulp stem cells  liver cirrhosis  melatonin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号