首页 | 本学科首页   官方微博 | 高级检索  
检索        


Arginase modulates myocardial contractility by a nitric oxide synthase 1-dependent mechanism
Authors:Steppan Jochen  Ryoo Sungwoo  Schuleri Karl H  Gregg Chris  Hasan Rani K  White A Ron  Bugaj Lukasz J  Khan Mehnaz  Santhanam Lakshmi  Nyhan Daniel  Shoukas Artin A  Hare Joshua M  Berkowitz Dan E
Institution:Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
Abstract:Cardiac myocytes contain two constitutive NO synthase (NOS) isoforms with distinct spatial locations, which allows for isoform-specific regulation. One regulatory mechanism for NOS is substrate (l-arginine) bioavailability. We tested the hypothesis that arginase (Arg), which metabolizes l-arginine, constrains NOS activity in the cardiac myocyte in an isoform-specific manner. Arg activity was detected in both rat heart homogenates and isolated myocytes. Although both Arg I and II mRNA and protein were present in whole heart, Arg II alone was found in isolated myocytes. Arg inhibition with S-(2-boronoethyl)-l-cysteine (BEC) augmented Ca(2+)-dependent NOS activity and NO production in myocytes, which did not depend on extracellular l-arginine. Arg II coimmunoprecipited with NOS1 but not NOS3. Isolation of myocyte mitochondrial fractions in combination with immuno-electron microscopy demonstrates that Arg II is confined primarily to the mitochondria. Because NOS1 positively modulates myocardial contractility, we determined whether Arg inhibition would increase basal myocardial contractility. Consistent with our hypothesis, Arg inhibition increased basal contractility in isolated myocytes by a NOS-dependent mechanism. Both the Arg inhibitors N-hydroxy-nor-l-arginine and BEC dose-dependently increased basal contractility in rat myocytes, which was inhibited by both nonspecific and NOS1-specific NOS inhibitors N(G)-nitro-l-arginine methyl ester and S-methyl-l-thiocitrulline, respectively. Also, BEC increased contractility in isolated myocytes from WT and NOS3 but not NOS1 knockout mice. We conclude that mitochondrial Arg II negatively regulates NOS1 activity, most likely by limiting substrate availability in its microdomain. These findings have implications for therapy in pathophysiologic states such as aging and heart failure in which myocardial NO signaling is disrupted.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号