首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effects of a water-soluble forskolin derivative (NKH477) and a membrane-permeable cyclic AMP analogue on noradrenaline-induced Ca2+ mobilization in smooth muscle of rabbit mesenteric artery.
Authors:S Ito  S Suzuki  and T Itoh
Institution:Department of Pharmacology, Faculty of Medicine, Kyushu University, Fukuoka, Japan.
Abstract:1. Effects were studied of 6-(3-dimethylaminopropionyl) forskolin (NKH477), a water-soluble forskolin derivative and of dibutyryl-cyclic AMP, a membrane-permeable cyclic AMP analogue on noradrenaline (NA)-induced Ca2+ mobilization in smooth muscle strips of the rabbit mesenteric artery. The intracellular concentration of Ca2+ (Ca2+]i), isometric force and cellular concentration of inositol 1,4,5-trisphosphate (InsP3) were measured. 2. NA (10 microM) produced a phasic, followed by a tonic increase in both Ca2+]i and force in a solution containing 2.6 mM Ca2+. NKH477 (0.01-0.3 microM) attenuated the phasic and the tonic increases in both Ca2+]i and force induced by 10 microM NA, in a concentration-dependent manner. 3. In Ca(2+)-free solution containing 2 mM EGTA with 5.9 mM K+, NA (10 microM) produced only phasic increases in Ca2+]i and force. NKH477 (0.01 microM) and dibutyryl-cyclic AMP (0.1 mM) each greatly inhibited these increases. 4. NA (10 microM) led to the production of InsP3 in intact smooth muscle strips and InsP3 (10 microM) increased Ca2+ in Ca(2+)-free solution after a brief application of Ca2+ in beta-escin-skinned smooth muscle strips. NKH477 (0.01 microM) or dibutyryl-cyclic AMP (0.1 mM) modified neither the NA-induced synthesis of InsP3 in intact muscle strips nor the InsP3-induced Ca2+ release in skinned strips. 5. In Ca(2+)-free solution, high K+ (40 and 128 mM) itself failed to increase Ca2+]i but concentration-dependently enhanced the amplitude of the increase in Ca2+]i induced by 10 microM NA with a parallel enhancement of the maximum rate of rise.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号