首页 | 本学科首页   官方微博 | 高级检索  
检索        


ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro.
Authors:B J Steffen  G Breier  E C Butcher  M Schulz  and B Engelhardt
Institution:Department of Pathology, Stanford University, California, USA.
Abstract:The expression of cell adhesion molecules (CAMs) in the choroid plexus was studied in normal brain and during experimental autoimmune encephalomyelitis (EAE) in the SJL/J mouse during inflammation induced by intracerebral injection of killed Corynebacterium parvum in the C3H/He mouse. Both ICAM-1 and VCAM-1, but not MAdCAM-1, were constitutively expressed on choroid plexus epithelium but not on the fenestrated capillary endothelial cells within the choroid plexus. During EAE, we observed an up-regulation of ICAM-1 and VCAM-1 and de novo expression of MAdCAM-1 on choroid plexus epithelial cells. In contrast, endothelial cells in the choroid plexus were not induced to express any of the investigated CAMs. In in situ hybridization analysis we demonstrated that ICAM-1, VCAM-1, and MAdCAM-1 were locally synthesized and that the amount of their mRNAs increased in the inflamed choroid plexus. In vitro, primary choroid plexus epithelial cells could be induced to express ICAM-1, VCAM-1, and MAdCAM-1 on their surface after treatment with proinflammatory cytokines such as tumor necrosis factor-alpha, interleukin-1, interferon-gamma, and lipopolysaccharide. To investigate the functional status of the expressed CAMs we performed Stamper-Woodruff binding assays on frozen sections of inflamed and naive brains. ICAM-1, VCAM-1, and MAdCAM-1 expressed in choroid plexus epithelial cells mediated binding of lymphocytes via their known ligands LFA-1 and alpha4-integrin, respectively. The expression of ICAM-1, VCAM-1, and MAdCAM-1 on choroid plexus epithelial cells together with the lack of their expression on the fenestrated choroid plexus endothelium raises the possibility that the epithelial blood-cerebrospinal-fluid barrier plays an important role in the immunosurveillance of the central nervous system.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号