首页 | 本学科首页   官方微博 | 高级检索  
     


Application of discrete data consistency conditions for selecting regularization parameters in PET attenuation map reconstruction
Authors:Panin Vladimir Y  Kehren Frank  Hamill James J  Michel Christian
Affiliation:CPS Innovations, 810 Innovation Dr, Knoxville, TN 37932, USA.
Abstract:Simultaneous emission and transmission measurement is appealing in PET due to the matching of geometrical conditions between emission and transmission and reduced acquisition time for the study. A potential problem remains: when transmission statistics are low, attenuation correction could be very noisy. Although noise in the attenuation map can be controlled through regularization during statistical reconstruction, the selection of regularization parameters is usually empirical. In this paper, we investigate the use of discrete data consistency conditions (DDCC) to optimally select one or two regularization parameters. The advantages of the method are that the reconstructed attenuation map is consistent with the emission data and that it accounts for particularity in the emission reconstruction algorithm and acquisition geometry. The methodology is validated using a computer-generated whole-body phantom for both emission and transmission, neglecting random events and scattered radiation. MAP-TR was used for attenuation map reconstruction, while 3D OS-EM is used for estimating the emission image. The estimation of regularization parameters depends on the resolution of the emission image controlled by the number of iterations in OS-EM. The computer simulation shows that, on one hand, DDCC regularized attenuation map reduces propagation of the transmission scan noise to the emission image, while on the other hand DDCC prevents excessive attenuation map smoothing that could result in resolution mismatch artefacts between emission and transmission.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号