Abstract: | Monkeypox viruses (MPXV) cause human monkeypox, a zoonotic smallpox-like disease endemic to Africa, and are of worldwide public health and biodefense concern. Using viruses from the Congo (MPXV-2003-Congo-358) and West African (MPXV-2003-USA-044) clades, we constructed recombinant viruses that express the luciferase gene (MPXV-Congo/Luc+and MPXV-USA-Luc+) and compared their viral infection in mice by biophotonic imaging. BALB/c mice became infected by both MPXV clades, but they recovered and cleared the infection within 10 days post-infection (PI). However, infection in severe combined immune deficient (SCID) BALB/c mice resulted in 100% lethality. Intraperitoneal (IP) injection of both MPXV-Congo and MPXV-Congo/Luc+resulted in a systemic clinical disease and the same mean time-to-death at 9 (±0) days post-infection. Likewise, IP injection of SCID-BALB/c mice with MPXV-USA or the MPXV-USA-Luc+, resulted in similar disease but longer (P<0.05) mean time-to-death (11±0 days) for both viruses compared to the Congo strains. Imaging studies in SCID mice showed luminescence in the abdomen within 24 hours PI with subsequent spread elsewhere. Animals infected with the MPXV-USA/Luc+had less intense luminescence in tissues than those inoculated with MPXV-Congo/Luc+, and systemic spread of the MPXV-USA/Luc+virus occurred approximately two days later than the MPXV-Congo/Luc+. The ovary was an important target for viral replication as evidenced by the high viral titers and immunohistochemistry. These studies demonstrate the suitability of a mouse model and biophotonic imaging to compare the disease progression and tissue tropism of MPX viruses. |