首页 | 本学科首页   官方微博 | 高级检索  
     


Intraventricular ascorbic acid administration decreases hypoxic-ischemic brain injury in newborn rats
Authors:Miura Shinobu  Ishida Akira  Nakajima Wako  Ohmura Akiko  Kawamura Masanari  Takada Goro
Affiliation:Department of Pediatrics, Akita University School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan. miurash@doc.med.akita-u.ac.jp
Abstract:Neuronal cell damage following hypoxic-ischemic (HI) brain injury is partly caused by production of free radicals and reactive oxygen species (ROS). Ascorbic acid (AA) is a potent antioxidant, which scavenges various types of ROS. Some studies have shown that it is neuroprotective, however, the issue is still controversial. In this study, we examined the effect of intraventricular AA administration on immature HI brain using the Rice-Vannucci model. After unilateral carotid artery ligation under isoflurane anesthesia, 7-day-old rat pups received varying concentrations of AA (0.04, 0.2, 1 and 5 mg/kg) by intraventricular injection and were exposed to 8% oxygen for 90 min. Vehicle controls received an equal volume of phosphate saline buffer. We assessed the neuroprotective effect of AA at 7 days post-HI. The percent brain damage measured by comparing the wet weight of the ligated side of hemisphere with that of contralateral one was reduced in both 1 and 5 mg/kg groups but not in either 0.04 or 0.2 mg/kg groups compared to vehicle controls (5 mg/kg 16.0 +/- 4.3%, 1 mg/kg 10.9 +/- 5.0%, vs. controls 36.7 +/- 3.6%, P < 0.05). Macroscopic evaluation of brain injury revealed the neuroprotective effect of AA in both 1 and 5 mg/kg groups (5 mg/kg 1.1 +/- 0.4, 1 mg/kg 0.4 +/- 0.3, vs. controls 2.9 +/- 0.3, P < 0.05). Western blots of fodrin on the ligated side also showed that AA significantly suppressed 150/145-kDa bands of fodrin breakdown products, which suggested that AA suppressed activation of calpain. Neuropathological quantitative analysis of cell death revealed that 1 mg/kg of AA injection significantly reduced the number of necrotic cells in cortex, caudate putamen, thalamus and hippocampus CA1, whereas that of apoptotic cells was only reduced in cortex. These findings show that intraventricular AA injection is neuroprotective after HI in immature rats.
Keywords:AA, ascorbic acid   DHA, dehydroascorbic acid   FBDP, fodrin breakdown product   HI, hypoxic-ischemia   HIE, hypoxic-ischemic encephalopathy   NMDA, N-methyl-  smallcaps"  >d-aspartate   PND, postnatal day   ROS, reactive oxygen species
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号