Abstract: | We studied D1 dopamine receptor (D1R) gene expression in the human striatum during ontogeny by in situ hybridization, immunohistochemistry, and D1R ligand autoradiography. D1R mRNA, protein, and binding sites ([3H]SCH 23390) were detected in the striatum from week 12 of fetal life. At this time, D1R mRNA was predominant in the striosomal neurons; D1R immunoreactivity (D1R-IR) and D1R binding sites displayed a pattern similar to D1R mRNA. D1R-IR was essentially present in striosomal cell bodies and neuropil, whereas only a few cell bodies were detected in the matrix. From week 20 of fetal life, D1R gene expression developed in the matrix neurons as well, thus leading to an even D1R mRNA expression throughout striosomes and matrix compartments at birth. Comparative analysis of the expression of D1R and dynorphin mRNA show the same developmental patchy pattern up to week 26. Indeed, neurons expressing the D1R gene contain dynorphin mRNA; in contrast, they do not express the preproenkephalin A gene. At birth, the pattern of D1R mRNA expression level was sharply different from that of dynorphin (DYN) gene expression. High DYN mRNA expression was restricted to the striosomes, whereas high D1R mRNA expression was present in the whole striatum. These results demonstrate that, during human ontogeny, functional D1 receptors are expressed as early as week 12 in the striatum, developing initially in the striosomal neurons containing high dynorphin mRNA content. Toward the end of fetal life, there is a dissociation between D1R and DYN expression levels, suggesting that neuroanatomical or neurochemical modifications occur at this period, which may contribute to the regulation of the tone of the striatal D1R and DYN gene with topological specificity. © 1996 Wiley-Liss, Inc. |