Abstract: | This study investigated the influence of ethanol exposure throughout gestation on cholinergic development within the rat striatal region. Pregnant Long-Evans rats were maintained on three diets throughout gestation: A liquid diet in which ethanol accounted for 35–39% of the total calories, a similar diet with the isocaloric substitution of sucrose for ethanol, and a lab chow control diet. At postnatal days 14 and 60 (P14 and P60), the striatal regions of the offspring were analyzed for the number of cholinergic neurons, via choline acetyltransferase (ChAT) immunostaining. The area of the striatum was also measured in these animals. At P14, P21, and P60, ChAT activity was assessed in the same region. These analyses revealed a significant increase in the number of cholinergic striatal neurons at P14 in the animals which had been exposed prenatally to ethanol. This increase was transient, however, with equal numbers of ChAT-positive cells found in all three groups by adulthood (P60). The brain weights of the ethanol-exposed animals were significantly reduced at P14 and P21, but were comparable to controls by P60. There were no significant differences in the striatal area or the overall volume of the region assessed, however, at either P14 or P60. Although there were some increases in ChAT activity across the ages viewed (most notably between P14 and P21), there were no effects of diet on ChAT activity at any age assessed. It is proposed that the increased numbers of cholinergic neurons could be a function of errors in migration, enhanced neurogenesis, diminished cell death, alterations in gene expression, or increased cell survival as a result of alterations in neurotrophic factor production or availability. © 1996 Wiley-Liss, Inc. |