Abstract: | Analysis of an extended pedigree in which a balanced t(9;11)(p24;q23.1) translocation was found to cosegregate with bipolar affective disorder revealed that five of 11 translocation carriers had bipolar affective disorder and one carrier had unipolar depression. There were no affected individuals in the pedigree without the balanced translocation. We hypothesized that gene(s) or gene regulatory regions disrupted by the translocation might be contributing to the bipolar affective disorder in a dominant fashion. To test this hypothesis, we isolated the derivative chromosome 9 and derivative chromosome 11 in somatic cell hybrids and identified the nearest flanking markers on chromosome 9 (D9S230 and D9S2011E/HRFX3) and chromosome 11 (EST00652 and CRYA2). YAC contigs were constructed in the region of flanking markers for both chromosomes 9 and 11. Chromosome 11 breakpoint was localized within an 8-kb region in a small insert (100 kb) YAC. Chromosome 9 breakpoint was localized within approximately 2 Mb region. Several genes and ESTs including EST00652, CRYA2, DRD2, 5HTR3 on chromosome 11 and VLDLR and SLC1A1 on chromosome 9 were mapped within the vicinity of the breakpoint but were shown not to be disrupted by the translocation breakpoint. Although several possibilities exist regarding the role of the balanced translocation in developing bipolar affective disorder in this pedigree, including a chance cosegregation, identification of a disrupted gene or gene regulatory region with the help of physical mapping resources described in this study may help to identify the presence of a susceptibility gene for this disorder. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 81:81–91, 1998. © 1998 Wiley-Liss, Inc. |