首页 | 本学科首页   官方微博 | 高级检索  
     


Heart energy metabolism after intestinal ischaemia and reperfusion
Authors:Stefanutti Giorgio  Vejchapipat Paisarn  Williams Stephen R  Pierro Agostino  Eaton Simon
Affiliation:a Department of Paediatric Surgery, Institute of Child Health, London, England, UK
Abstract:

Background/purpose

Multiple organ failure subsequent to intestinal ischaemia and reperfusion (I/R) includes cardiac failure, but little is known about heart energy metabolism in this setting. This study investigates the effects of intestinal I/R on heart energy metabolism and evaluates the effects of moderate hypothermia.

Methods

Adult rats underwent intestinal ischaemia for 60 minutes followed by 120 minutes of reperfusion. Animals were maintained at either normothermia (36° to 38°C) or moderate hypothermia (30° to 32°C). In experiment A, 2 groups were studied: (1) sham at normothermia; (2) I/R at normothermia. After death, the heart was removed. Cardiac phosphoenergetics were assessed by 31P magnetic resonance spectroscopy; data are expressed as micromoles per gram. In experiment B, 4 groups were studied: (1) sham at normothermia, (2) I/R at normothermia, (3) sham at hypothermia, (4) I/R at hypothermia. At the end of the experiment, the heart was harvested. The activity of carnitine palmitoyl transferase I (CPT I), an important enzyme in the control of fatty acid oxidation, was measured; data are expressed as nanomoles per minute per unit citrate synthase. Results are expressed as mean ± SEM.

Results

In experiment A, there were no differences between the 2 study groups in cardiac phosphocreatine, inorganic phosphate, adenosine triphosphate (ATP), or in the ratio of inorganic phosphate to ATP. In experiment B, CPT I activity was decreased significantly after I/R at normothermia compared with normothermic sham, but this enzyme inhibition was prevented by hypothermia (3.9 ± 0.2; v I/R).

Conclusions

These results suggest that although cardiac ATP supply was maintained during intestinal I/R at normothermia, the balance of substrate utilisation was shifted from fatty acid oxidation to carbohydrate utilisation. However, moderate hypothermia modified these changes. The beneficial effect of moderate hypothermia on cardiac metabolism during intestinal I/R has potential clinical application in various surgical conditions.
Keywords:Hypothermia   ischaemia reperfusion injury   heat energy metabolism
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号