首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of transmembrane ion gradients on Raman spectra of sealed, hemoglobin-free erythrocyte membrane vesicles.
Authors:R B Mikkelsen   S P Verma     D F Wallach
Abstract:Sealed hemoglobin-free erythrocyte vesicles have been isolated. Imposition of transmembrane cation gradients increases the intensity of Raman scattering in the CH3-stretching region as observed with unsealed ghosts at temperatures greater than 38 degrees C and pH less than 7.0 [Verma, S. P. & Wallach, D. F. H. (1976) Proc. Natl. Acad. Sci. USA 73, 3358--3561]. Modifications in the amide I and amide III frequencies consistent with increased helicity of membrane proteins are observed upon imposition of a cation gradient. Spectrin-free vesicles also demonstrate cation gradient-sensitive intensity changes in the CH3-stretching region. However, no evidence for cation gradient-related protein conformation changes is found with these vesicles. The transmembrane potential of these vesicles has been altered by variations in anion composition and the electrogenic activity of Na+,K+-ATPase. The membrane potential was monitored by cyanine dye fluorescence. Imposition of a membrane potential (negative inside) also increased the intensity of Raman scattering in the CH3-stretching region. These results suggest that a transmembrane potential (negative inside) and/or cation gradient can energize membranes by compression of the apolar region and transfer of protein methyl residues into polar regions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号