首页 | 本学科首页   官方微博 | 高级检索  
检索        


Diarylheptanoid 7-(3,4 dihydroxyphenyl)-5-hydroxy-1-phenyl-(1E)-1-heptene from Curcuma comosa Roxb. protects retinal pigment epithelial cells against oxidative stress-induced cell death
Authors:Thunchnok JitsanongKornnika Khanobdee  Pawinee PiyachaturawatKanokpan Wongprasert
Institution:a Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
b School of Biology, Institute of Science, Suranaree University of Technology, Nakhon-Ratchasima, Thailand
c Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
d Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
Abstract:Chronic exposure to oxidative stress causes damage to retinal pigment epithelial cells which may lead to the development of age-related macular degeneration, the major cause of vision loss in humans. Anti-oxidants provide a natural defense against retinal cell damage. The present study was designed to evaluate the potential anti-oxidant activity and protective effect of two diarylheptanoids isolated from a medicinal herb Curcuma comosa; 7-(3,4 dihydroxyphenyl)-5-hydroxy-1-phenyl-(1E)-1-heptene (compound A), and 1,7-diphenyl-4(E),6(E)-heptadien-3-ol (compound B) against oxidative stress (H2O2)-induced human retinal pigment epithelial (APRE-19) cell death. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay indicated that the anti-oxidant activity (IC50) of compound A was similar to that of vitamin C. Pre-treatment of ARPE-19 cells with 20 μM compound A for 4 h afforded greater protection against the insult from 500 μM H2O2, compared to a similar protection period for compound B. Compound A lowered H2O2-induced lipid peroxidation, malondialdehyde formation and intracellular reactive oxygen species. Furthermore, compound A ameliorated the H2O2-induced decrease in anti-oxidant enzyme activities and subsequent apoptotic cell death in ARPE-19 cells in a dose and time-dependent manner. These results suggest that compound A protects ARPE-19 cells against oxidative stress, in part, by enhancing several anti-oxidant defense mechanisms. Therefore, compound A may have therapeutic potential for diseases associated with oxidative stress, particularly degenerative retinal diseases.
Keywords:Curcuma comosa Roxb    Diarylheptanoids  Anti-oxidant activities  Retinal pigment epithelial cell  Oxidative stress
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号