首页 | 本学科首页   官方微博 | 高级检索  
     


Ten Hertz thalamus stimulation increases tremor activity in the subthalamic nucleus in a patient with Parkinson's disease
Authors:Esther Florin  Christiane Reck  Lothar Burghaus  Ralph Lehrke  Joachim Gross  Volker Sturm  Gereon R Fink  Lars Timmermann
Affiliation:1. Service de Neurologie Fonctionnelle et d''Epileptologie, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron F-69677, France;2. Centre de Recherche en Neurosciences, INSERM U1028, CNRS 5292, UCBL-1, Lyon F-69003, France;3. Service de Neurochirurgie Fonctionnelle, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron F-69677, France
Abstract:OBJECTIVE: In patients with Parkinson's disease (PD) the effect of thalamic stimulation on tremor pathophysiology remains largely unclear. By recording local field potentials (LFPs) in the subthalamic nucleus (STN) while stimulating the nucleus ventralis intermedius thalami (VIM), information of the stimulation effects should be gained. METHODS: We had the unique opportunity to intraoperatively record LFPs of the STN in a patient with PD while stimulating the VIM. VIM electrodes had been implanted 9 years previously because of tremor. Due to worsening of clinical symptoms an implantation of STN electrodes had become necessary. RESULTS: High frequency stimulation in the VIM lowered the power of the tremor frequency band (4-7Hz) in the STN. In contrast, 10Hz VIM stimulation elevated the power of the tremor frequency band as well as STN-EMG coupling. CONCLUSIONS: The effect of high frequency stimulation may explain the improvement of tremor in patients who are treated with VIM deep brain stimulation. The power elevation during 10Hz stimulation suggests that the pathological cerebral and cerebral-muscular communication in PD is mainly driven at 10Hz. SIGNIFICANCE: The direct cerebral recordings support the view that a 10Hz network is a pathophysiological key mechanism in the generation of motor deficits in PD.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号