A combined approach for purging multidrug-resistant leukemic cell lines in bone marrow using a monoclonal antibody and chemotherapy. |
| |
Authors: | M Aihara Y Aihara G Schmidt-Wolf I Schmidt-Wolf B I Sikic K G Blume N J Chao |
| |
Affiliation: | Department of Medicine, Stanford University School of Medicine, CA. |
| |
Abstract: | Selective removal of malignant cells (purging) from bone marrow (BM) is a concern in autologous BM transplantation (ABMT). Use of vincristine, etoposide, or doxorubicin for purging could be rendered ineffective by the presence of multidrug-resistant (MDR) tumor cells. To circumvent this particular problem, we investigated whether 17F9, a monoclonal IgG2b antibody directed against the cell surface product of the MDR gene, P-glycoprotein, is effective in selective removal of MDR cells from BM when used with rabbit complement (C'). Using two different cell lines we have demonstrated that 17F9 + C' selectively lyses MDR-positive cells. Three rounds of antibody + C' resulted in 96.4% +/- 3.6% kill of K562/DOX and 100% +/- 0% of CEM/VLB cells. Mixtures of malignant cells and normal BM resulted in 99.85% removal of K562/DOX and 99.91% removal of CEM/VLB clonogenic cells. This treatment did not affect normal committed precursors compared with C' alone. The addition of the cytotoxic agent etoposide (VP-16) following antibody purging results in a 4.6 log reduction of malignant cells. Furthermore, this antibody was effective when used against patients' leukemic blasts. These results suggest the use of 17F9 + C' is effective and selective for removal of MDR cells from BM before ABMT and the addition of VP-16 enhances the purging efficacy. |
| |
Keywords: | |
|
| 点击此处可从《Blood》浏览原始摘要信息 |
|
点击此处可从《Blood》下载全文 |
|