Abstract: | A high-order, well-balanced, positivity-preserving quasi-Lagrange movingmesh DG method is presented for the shallow water equations with non-flat bottomtopography. The well-balance property is crucial to the ability of a scheme to simulate perturbation waves over the lake-at-rest steady state such as waves on a lake ortsunami waves in the deep ocean. The method combines a quasi-Lagrange movingmesh DG method, a hydrostatic reconstruction technique, and a change of unknownvariables. The strategies in the use of slope limiting, positivity-preservation limiting,and change of variables to ensure the well-balance and positivity-preserving properties are discussed. Compared to rezoning-type methods, the current method treatsmesh movement continuously in time and has the advantages that it does not need tointerpolate flow variables from the old mesh to the new one and places no constraintfor the choice of a update scheme for the bottom topography on the new mesh. A selection of one- and two-dimensional examples are presented to demonstrate the well-balance property, positivity preservation, and high-order accuracy of the method andits ability to adapt the mesh according to features in the flow and bottom topography. |