首页 | 本学科首页   官方微博 | 高级检索  
检索        


An Augmented Lagrangian Deep Learning Method for Variational Problems with Essential Boundary Conditions
Authors:Jianguo Huang  Haoqin Wang & Tao Zhou
Abstract:This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions. To this end, we first reformulate the original problem into a minimax problem corresponding to a feasible augmented Lagrangian, which can be solved by the augmented Lagrangian method in an infinite dimensional setting. Based on this, by expressing the primal and dual variables with two individual deep neural network functions, we present an augmented Lagrangian deep learning method for which the parameters are trained by the stochastic optimization method together with a projection technique. Compared to the traditional penalty method, the new method admits two main advantages: i) the choice of the penalty parameter is flexible and robust, and ii) the numerical solution is more accurate in the same magnitude of computational cost. As typical applications, we apply the new approach to solve elliptic problems and (nonlinear) eigenvalue problems with essential boundary conditions, and numerical experiments are presented to show the effectiveness of the new method.
Keywords:The augmented Lagrangian method  deep learning  variational problems  saddle point problems  essential boundary conditions  
点击此处可从《》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号