首页 | 本学科首页   官方微博 | 高级检索  
     


Interaction of enveloped viruses with planar bilayer membranes: observations on Sendai, influenza, vesicular stomatitis, and Semliki Forest viruses
Authors:J D Young  G P Young  Z A Cohn  J Lenard
Affiliation:1. The Rockefeller University, New York, New York 10021, USA;2. Department of Physiology and Biophysics, UMDNJ-Rutgers Medical School, Piscataway, New Jersey 08854, USA
Abstract:Exposure of a planar lipid bilayer to Sendai virus at pH 7.0 resulted in conductance increases that continued over several minutes, provided that the virus particles had first been conditioned by freezing and thawing, sonicating, or storing for 2 weeks in the cold. Individual electrical events could not be resolved, even on a millisecond time scale, and thus do not reflect the insertion of structural channels into the lipid bilayer. Prior treatment of the Sendai virions with protease prevented the conductance increases, but exposure of the bilayer to protease after induction of the conductance change did not abolish it. The Sendai-induced conductance change was increased in rate, but qualitatively unchanged in nature, if gangliosides were included in the planar bilayer. Activity for Sendai virus was low at pH 5.0, and increased with increasing pH up to 9.0. Influenza, Semliki Forest virus, and vesicular stomatitis virus all induced similar conductance changes around pH 5.2, but were inactive when tested at pH 7.0. The presence of cholesterol in the bilayer caused marked enhancement (two- to sixfold) of the response to Sendai, influenza and Semliki Forest virus, but caused only slight enhancement of the response to vesicular stomatitis virus. It is concluded that the observed increases in ionic permeability arise from alterations in lipid motions on a submillisecond time scale resulting from the incorporation of damaged viral membranes into the planar bilayer by fusion.
Keywords:Author to whom requests for reprints should be addressed.
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号