首页 | 本学科首页   官方微博 | 高级检索  
     


Hyaluronic Acid and Poly-l-Lysine Layers on Calcium Alginate Microspheres to Modulate the Release of Encapsulated FITC-Dextran
Authors:Emily T. Baldwin  Laura A. Wells
Affiliation:Department of Chemical Engineering, Queen''s University, 99 University Ave., Kingston, Ontario, Canada
Abstract:Alginate solutions crosslink into microspheres in calcium alginate, enabling the encapsulation and subsequent release of biological macromolecules and drugs. However, release from calcium alginate into PBS is relatively fast because it will decrosslink the gel relatively quickly. In this research, FITC-dextran (MW 10 kDa) was encapsulated in 2% (w/v) calcium alginate microspheres by electrospraying. The resulting microspheres (diameter = 247 ± 13 μm) were then layered with thin polyelectrolyte films of hyaluronic acid (HA) and poly-l-lysine (PLL) to attempt to slow the diffusion of FITC-dextran out of the microspheres and the coating parameters were modified to modulate diffusion and release. Increasing the concentration of FITC-dextran encapsulated in the microspheres resulted in an increase in its release over time into PBS. Crosslinking PLL/HA layers on the microspheres did not decrease the in vitro release rates of encapsulated FITC-dextran into PBS. Increasing the number of layers on the microspheres from 3 to 5 layers significantly decreased the amount of encapsulated FITC-dextran released. However, increasing the number of layers to 7 did not further sustain the release of FITC-dextran, likely because these microspheres collapsed to a smaller size during the coating procedure, resulting in release controlled by both diffusion and swelling. Multiple layers of PLL and HA provided a robust mechanism to sustain and control release of large molecules from calcium alginate.
Keywords:Biomaterials  Drug delivery systems  Sustained release  Microspheres  Polyelectrolyte layers
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号