首页 | 本学科首页   官方微博 | 高级检索  
检索        


Mechanical lengthening of porcine small intestine with decreased forces
Authors:Lauren SY Wood  Hadi S Hosseini  Modupeola Diyaolu  Anne-Laure Thomas  Jordan S Taylor  James CY Dunn
Institution:Division of Pediatric Surgery, Stanford University School of Medicine, 453 Quarry Road, MC 5733, Stanford, CA 94304, United States
Abstract:Introductionshort bowel syndrome is marked by inadequate intestinal surface area to absorb nutrients. Current treatments are focused on medical management and surgical reconfiguration of the dilated intestine. We propose the use of spring-mediated distraction enterogenesis as a novel intervention to increase intestinal length. Given our previous success lengthening intestinal segments using springs with spring constant ~7 N/m that exerts 0.46 N or higher, we sought to determine the minimal force needed to lengthen porcine small intestinal segments, and to explore effects on intestine over time.MethodsJuvenile Yucatan pigs underwent laparotomy with enterotomy to introduce nitinol springs intraluminally (n = 21 springs). Bowel segments (control, spring-distracted) were retrieved on post-operative day (POD) 7 and 14, and lengths measured. Thickness of cross-sectional intestinal layers were measured using H&E, and submucosal collagen fiber orientation measured using trichrome stained sections.Resultsall pigs survived to POD7 and 14. Spring constants of at least 2 N/m exerting a minimum force of 0.10 N significantly lengthened intestinal segments (p <0.0001). The stronger the spring force, the greater the induced thickness of various intestinal layers at POD7 and 14. Collagen fiber orientation was also more disordered because of stronger springs.Conclusiona spring constant of approximately 2 N/m exerting 0.10 N and greater significantly lengthens intestinal segments and stimulates intestinal structural changes at POD7 and 14. This suggests a decreased force is capable of inducing spring-mediated distraction enterogenesis.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号