首页 | 本学科首页   官方微博 | 高级检索  
检索        


Designing a novel visible-light-driven heterostructure Ni–ZnO/S-g-C3N4 photocatalyst for coloured pollutant degradation
Authors:Ali Bahadur  Shahid Iqbal  Hashem O Alsaab  Nasser S Awwad  Hala A Ibrahium
Abstract:In this study, photocorrosion of ZnO is inhibited by doping Ni in the ZnO nanostructure and electron–hole recombination was solved by forming a heterostructure with S-g-C3N4. Ni is doped into ZnO NPs from 0 to 10% (w/w). Among the Ni-decorated ZnO NPs, 4% Ni-doped ZnO NPs (4NZO) showed the best performance. So, 4% Ni–ZnO was used to form heterostructure NCs with S-g-C3N4. NZO NPs were formed by the wet co-precipitation route by varying the weight percentage of Ni (0–10% w/w). Methylene blue (MB) was used as a model dye for photocatalytic studies. For the preparation of the 4NZO-x-SCN nanocomposite, 4NZO NPs were formed in situ in the presence of various concentrations of S-g-C3N4 (10–50% (w/w)) by using the coprecipitation route. The electron spin resonance (ESR) and radical scavenger studies showed that O2 and OH free radicals were the main reactive species that were responsible for MB photodegradation.

Ni-doped ZnO/S-g-C3N4 nanocomposites were formed as a novel heterostructure photocatalyst.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号