首页 | 本学科首页   官方微博 | 高级检索  
检索        


Peptide-directed Pd-decorated Au and PdAu nanocatalysts for degradation of nitrite in water
Authors:Imann Mosleh  Alireza Abbaspourrad
Institution:Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca NY 14853 USA, +1 607 255 2923
Abstract:In this work, a palladium binding peptide, Pd4, has been used for the synthesis of catalytically active palladium-decorated gold (Pd-on-Au) nanoparticles (NPs) and palladium–gold (PdxAu100−x) alloy NPs exhibiting high nitrite degradation efficiency. Pd-on-Au NPs with 20% to 300% surface coverage (sc%) of Au showed catalytic activity commensurate with sc%. Additionally, the catalytic activity of PdxAu100−x alloy NPs varied based on palladium composition (x = 6–59). The maximum nitrite removal efficiency of Pd-on-Au and PdxAu100−x alloy NPs was obtained at sc 100% and x = 59, respectively. The synthesized peptide-directed Pd-on-Au catalysts showed an increase in nitrite reduction three and a half times better than monometallic Pd and two and a half times better than PdxAu100−x NPs under comparable conditions. Furthermore, peptide-directed NPs showed high activity after five reuse cycles. Pd-on-Au NPs with more available activated palladium atoms showed high selectivity (98%) toward nitrogen gas production over ammonia.

In this work, a palladium binding peptide, Pd4, has been used for the synthesis of catalytically active palladium-decorated gold (Pd-on-Au) nanoparticles (NPs) and palladium–gold (PdxAu100−x) alloy NPs exhibiting high nitrite degradation efficiency.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号