首页 | 本学科首页   官方微博 | 高级检索  
     


Propagation of electrical activity in uterine muscle during pregnancy: a review
Authors:C. Rabotti  M. Mischi
Affiliation:Electrical Engineering Department, Eindhoven University of Technology, Eindhoven, the Netherlands
Abstract:The uterine muscle (the myometrium) plays its most evident role during pregnancy, when quiescence is required for adequate nourishment and development of the foetus, and during labour, when forceful contractions are needed to expel the foetus and the other products of conception. The myometrium is composed of smooth muscle cells. Contraction is initiated by the spontaneous generation of electrical activity at the cell level in the form of action potentials. The mechanisms underlying uterine quiescence during pregnancy and electrical activation during labour remain largely unknown; as a consequence, the clinical management of preterm contractions during pregnancy and inefficient uterine contractility during labour remains suboptimal. In an effort to improve clinical management of uterine contractions, research has focused on understanding the propagation properties of the electrical activity of the uterus. Different perspectives have been undertaken, from animal and in vitro experiments up to clinical studies and dedicated methods for non‐invasive parameter estimation. A comparison of the results is not straightforward due to the wide range of different approaches reported in the literature. However, previous studies unanimously reveal a unique complexity as compared to other organs in the pattern of uterine electrical activity propagation, which necessarily needs to be taken into consideration for future studies to be conclusive. The aim of this review is to structure current variegated knowledge on the properties of the uterus in terms of pacemaker position, pattern, direction and speed of the electrical activity during pregnancy and labour.
Keywords:conduction velocity  pregnancy  electrohysterography  myometrium  smooth muscle  uterine electromyography
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号