首页 | 本学科首页   官方微博 | 高级检索  
     


Interface engineering through electron transport layer modification for high efficiency organic solar cells
Authors:Kunal Borse  Ramakant Sharma  Dipti Gupta  Aswani Yella
Affiliation:Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 India.; Department of Metallurgy, Government Polytechnic, Kolhapur-416004 India
Abstract:In the present study, we have compared the device performance of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thio-phene-)-2-carb-oxylate-2-6-diyl)] (PTB7-Th):phenyl-C71-butyric acid methyl ester (PCBM) organic solar cells (OSCs) in an inverted geometry with ZnO, a bilayer of ZnO and Ba(OH)2 [ZnO/Ba(OH)2] and a nanocomposite of ZnO and Ba(OH)2 [ZnO:Ba(OH)2] as electron transport layers (ETLs). Our study reveals that the performance of the devices with the ZnO/Ba(OH)2 and ZnO:Ba(OH)2 nanocomposite as ETL supersedes that of devices with only ZnO as ETL. The plausible reasons for the improved performance of these devices are identified using morphological studies, contact angle measurements, X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and photo-electrochemical impedance spectroscopy (EIS) measurements. It is observed that films of ZnO/Ba(OH)2 and ZnO:Ba(OH)2 nanocomposites have a low work function and are slightly more smooth and hydrophobic than ZnO films. This might have suppressed the charge recombination and thereby improved the charge collection as has been confirmed by EIS measurements.

Schematic of PTB7-Th:PCBM OSCs in an inverted geometry with ZnO, ZnO/Ba(OH)2 and ZnO:Ba(OH)2 nanocomposites as ETLs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号