首页 | 本学科首页   官方微博 | 高级检索  
     


Comparative advantages of Zn–Cu–In–S alloy QDs in the construction of quantum dot-sensitized solar cells
Authors:Liang Yue  Huashang Rao  Jun Du  Zhenxiao Pan  Juan Yu  Xinhua Zhong
Affiliation:School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237 China, Fax: +86 20 8528 0319, +86 20 8528 0319 ; College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642 China,
Abstract:Alloyed structures of quantum dot light-harvesting materials favor the suppression of unwanted charge recombination as well as acceleration of the charge extraction and therefore the improvement of photovoltaic performance of the resulting solar cell devices. Herein, the advantages of Zn–Cu–In–S (ZCIS) alloy QD serving as light-harvesting sensitizer materials in the construction of quantum dot-sensitized solar cells (QDSCs) were compared with core/shell structured CIS/ZnS, as well as pristine CIS QDs. The built QDSCs with alloyed Zn–Cu–In–S QDs as photosensitizer achieved an average power conversion efficiency (PCE) of 8.47% (Voc = 0.613 V, Jsc = 22.62 mA cm−2, FF = 0.610) under AM 1.5G one sun irradiation, which was enhanced by 21%, and 82% in comparison to those of CIS/ZnS, and CIS based solar cells, respectively. In comparison to cell device assembled by the plain CIS and core/shell structured CIS/ZnS, the enhanced photovoltaic performance in ZCIS QDSCs is mainly ascribed to the faster photon generated electron injection rate from QD into TiO2 substrate, and the effective restraint of charge recombination, as confirmed by incident photon-to-current conversion efficiency (IPCE), open-circuit voltage decay (OCVD), as well as electrochemical impedance spectroscopy (EIS) measurements.

Benefiting from the accelerative electron injection and retarded charge recombination, Zn–Cu–In–S alloy QD based QDSC achieved a PCE of 8.55%, which is 21%, and 82% higher than those of CIS/ZnS, and pristine CIS QDs based solar cells, respectively.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号