首页 | 本学科首页   官方微博 | 高级检索  
     


Enzymatic synthesis and self-assembly of glycolipids: robust self-healing and wound closure performance of assembled soft materials
Authors:Yadavali Siva Prasad  Balasubramani Saritha  Ayyapillai Tamizhanban  Krishnamoorthy Lalitha  Sakthivel Kabilan  C. Uma Maheswari  Vellaisamy Sridharan  Subbiah Nagarajan
Affiliation:Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur – 613401 Tamil Nadu India ; Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143 Jammu and Kashmir India ; Department of Chemistry, National Institute of Technology Warangal, Warangal-506004 Telangana India, +91-9940430715
Abstract:In developing countries, wounds are a major health concern and pose a significant problem. Hence, the development of new materials that can act as scaffolds for in situ tissue regeneration and regrowth is necessary. In this report, we present a new class of injectable oleogel and composite gel derived from glycolipids that provide reversible interlinked 3D fiberous network architecture for effective wound closure by tissue regrowth and regeneration. Glycolipids were derived from α-chloralose and various vinyl esters using Novozyme 435, an immobilized lipase B from Candida antarctica as a catalyst, in good yield. These glycolipids undergo spontaneous self-assembly in paraffin oil to form an oleogel, in which curcumin was successfully incorporated to generate a composite gel. Morphological analysis of the oleogel and composite gel clearly revealed the formation of a 3D fiberous network. Rheological investigation revealed the thermal and mechanical processability of the oleogel and composite gel under various experimental conditions. Interestingly, the developed injectable oleogel and composite gel are able to accelerate the wound healing process by regulating the overlapping phases of inflammation, cell proliferation and extracellular matrix remodelling. Since chloralose displays anesthetic properties, this study will establish a new strategy to develop anesthetic wound healing oleogels in the future.

In this report, we present a new class of injectable oleogels and a composite gel derived from glycolipids that provide a reversible interlinked 3D fiberous network architecture for effective wound closure by tissue regrowth and regeneration.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号