首页 | 本学科首页   官方微博 | 高级检索  
     


Low cost bio-derived carbon-sprinkled manganese dioxide as an efficient sulfur host for lithium–sulfur batteries
Authors:Aswathy Raghunandanan  Ulaganathan Mani  Ragupathy Pitchai
Affiliation:Flow Battery Section, Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi-630 003 Tamil Nadu India.; Academy of Scientific and Innovative Research, New Delhi India
Abstract:Realization of the lithium-sulfur battery system is of major concern because a theoretical cell capacity of 1675 mA h g−1 can be obtained at an average voltage of 2.1 V. The primary issues that hinder the practical applications of this system include its poor utilization of sulfur, limited cycle life and retarded rate performance. In the present study, hemp-derived carbon (C-hemp) is made into a composite with room temperature-synthesized MnO2, which acts as a host for sulfur in the lithium-sulfur battery system. The composite material is characterized physico-chemically and electrochemically using various techniques. This composite exhibits better electrochemical performance as a sulfur carrier compared to pristine carbon. An initial specific capacity of 926 mA h g−1 is obtained at 0.1 C for C-hemp/MnO2-sulfur, which surpasses that of the C-hemp-sulfur sample. C-hemp provides a conductive matrix as well as porous sites for the accommodation of sulfur, while MnO2 exhibits the ability to absorb polysulfide chemically. Thus, this composite is established as a potential cathode for lithium-sulfur batteries.

MnO2-biomass (hemp) derived carbon composite is used as an effective cathode in Li–S cell. MnO2 acted as polysulfide scuffolding in the composite enhancing Li–S cell performance. New carbon source (hemp-fibre) was utilised successfully in Li–S.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号